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Using an experimental setup that allows one to distinguish resonance frequencies of vibrations of the studied
specimen of snow, we showed the possibility of determining the coefficient of permeability of snow and the
velocity of sound in the air confined in its pores.

The practice of prediction of snowslides requires on-line data of the characteristics of strength of the snow
cover. Acoustic methods based on measurements of the velocity of sound in snow by recording the time of travel of
an ultrasonic pulse through a snow specimen of known size are widely used for obtaining such data. However, this
method with one receiver does not allow separate recording of the parameters of waves propagating through the solid
skeleton of snow and the air filling the pores in snow, since these parameters can be of the same order.

In [1], an original experimental setup is suggested (Fig. 1); this setup allows one, by exciting the systems of
standing waves in the studied snow specimen, to separately distinguish resonance frequencies for sound vibrations
propagating through the solid skeleton of the snow specimen and the air filling the pores in snow.

In the present paper, on the basis of theoretical calculations we show that by using the above-mentioned setup
we can also determine the coefficient of permeability of snow and the velocity of sound in the air confined in snow
pores (pore velocity of sound). The setup includes a thin-walled pipe with a smooth inner surface into which the stud-
ied specimen of snow is placed. In small deformation of snow there is no lateral expansion in this tube.

The schematic (Fig. 1) shows the generator of sound frequencies 1, which is a source of alternating voltage
and serves as a power source of the electromagnetic exciter 2, piston membrane 3, acoustic pipe 4 with the snow
specimen 5, receivers 6 and 7, pre-amplifiers 8 and 9, double-beam oscilloscope 10, and frequency meter 11.

The piston membrane vibrates under the action of the generator, and these vibrations are transferred to the
snow specimen adjacent to it. The receivers take elastic vibrations and transform them to electric oscillations, which,
after amplification, are sent to the oscilloscope. Two receivers are used: one of them is a miniature electrodynamic mi-
crophone and the other — a piezoceramic sensor with a recording stylus.

In smooth variation of the frequency of exciting acoustic vibrations the instant sets in when this frequency co-
incides initially with the first, main, frequency, then with the second, and so on, frequencies of natural vibrations of
the studied snow specimen. Resonance frequencies are determined by maxima of the deviation of spots on the oscillo-
scope display.

In sounding the specimen, the membrane is in contact with the snow. A small gap (of about 0.1 mm) is left
between the body of the microphone and the snow surface such that vibrations of the snow skeleton were not trans-
ferred to the microphone (the piezosensor does not react to air vibrations). The stylus of the piezosensor touches the
surface of the snow specimen and is frozen to it.

Experimental studies conducted in [1] showed that the considered setup allows one to clearly record the first
three to four resonance frequencies of elastic vibrations propagating through both the solid skeleton of snow and the
air filling the snow pores.

Resonance frequencies of vibrations νnr that coincide with natural frequencies of vibrations of the solid skele-
ton of the snow specimen are related to the longitudinal velocity of sound cl in the solid skeleton of snow as follows:
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νnr = 
nc

O

2h
 ,   n = 1, 2, 3 , ... . (1)

On the other hand, the velocity of propagation of sound through the solid skeleton of snow is related to the
Young modulus E as

c
O
 = √ (1 − σ) E

ρ (1 + σ) (1 − 2σ)
 . (2)

Thus, formulas (1) and (2) allow one to determine the Young modulus E by resonance frequencies if the
snow density and the Poisson coefficient are known.

Formula (1), however, is inapplicable to air inclusions of snow, since the latter, as was shown in [2], form a
dispersive medium where each monochromatic wave with frequency ω has its own velocity of sound vg = vg(ω). As
will be shown below, resonance frequencies of vibrations of the air confined in the snow pores are directly related to
the coefficient of permeability of snow. Our task is to determine these relations.

Forced Longitudinal Vibrations of Snow between Two Parallel Planes. As a theoretical model of forced
vibrations of the snow specimen placed in a steel pipe in the above-described setup we consider forced vibrations of
a snow layer of thickness h between two infinite parallel planes (Fig. 2). In this snow, as well as in the snow in the
steel pipe, there is no lateral expansion.

We assume that starting from the time instant t = 0, a unit surface area of the lower base of the snow layer
is affected by the periodic force

F (t) = F0 sin ωt . (3)

The system of equations describing longitudinal vibrations of snow in displacements is written as [2]

∂2
u1

∂t
2  = c

O

2
 
∂2

u1

∂x
2  + ε′c2

2
 
∂2

u2

∂x
2  + εω∗  





∂u1

∂t
 − 
∂u2

∂t




 ,   0 < x < h ; (4)

∂2
u2

∂t
2

 = c2
2
 
∂2

u2

∂x
2  + 





1

f0
 − 1




 
∂2

u1

∂t2
 + ω∗  





∂u1

∂t
 − 
∂u2

∂t




 ,   0 < x < h . (5)

In Eq. (4), the terms involving the factors ε and ε′ are small compared to the other terms and they can be
discarded. Physically this means that the resistance that the solid skeleton of snow experiences from the side of the air

Fig. 1. Schematic of the setup for measuring the parameters of elastic waves in
snow specimens by the method of a resonance pipe.
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filling the pores between the ice crystals in snow is negligibly small; consequently the presence of air in the pores of
snow virtually does not affect the elastic vibrations of the snow skeleton.

Thus, for the solid skeleton of snow we have

∂2
u1

∂t
2

 = cO

2
 
∂2

u1

∂x
2  ,   0 < x < h . (6)

The solution of Eq. (6) must satisfy the initial and boundary conditions

u1 (x, 0) = u1t (x, 0) = 0 , (7)

∂u1

∂x



 x=0

 = A sin ωt ,   
∂u1

∂t


 x=h

 = 0 , (8)

where A = F0
 ⁄ E.

We seek the solution of problem (6)–(8) in the form of the sum of two functions:

u1 (x, t) = Ax 

1 − 

x
2h



 sin ωt + V (x, t) . (9)

Here V(x, t) is a new unknown function that satisfies the nonhomogeneous wave equation

∂2
V

∂t
2

 = c
O

2
 
∂2

V

∂x
2

 + A 






ω2

x 



1 − 

x

2h




 − 

c
O

2

h







 sin ωt , (10)

the homogeneous boundary equations

∂V (0, t)
∂x

 = 
∂V (h, t)
∂x

 = 0 ,
(11)

and the initial conditions

V (x, 0) = 0 ,   Vt (x, 0) = − Aωx 

1 − 

x
2h



 . (12)

The solution of problem (10)–(12) can be written in the form (see, e.g., [3])

Fig. 2. Snow specimen placed between the parallel planes.
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V (x, t) =  ∑ 

n=1

∞

 Bn cos ωnt − cos 
πnx
h

 − 
2Aω2

h
 ×

× ∑ 

n=1

∞

 
1

ωn

 






∫ 
0

h 






c
O

2

hω2 − ξ + 
ξ2

2h







 cos 

πnξ

h
 dξ ∫ 

0

t

sin ωτ sin ωn (t − τ) dτ






 cos 

πnx

h
 , (13)

where ωn = πncl
 ⁄ h and the coefficients Bn are determined as follows:

Bn = − 
2Aω

hωn

 ∫ 
0

1

ξ 

1 − 

ξ

2h




 cos 

πnξ

h
 dξ = 

2Aωh

π2
n

2ωn

 . (14)

The integrals in (13) are

 ∫ 
0

h 






c
O

2

hω2
 − ξ + 

ξ2

2h







 cos 

πnξ

h
 dξ = 

h
2

π2
n

2 , (15)

 ∫ 
0

t

sin ωτ sin ωn (t − τ) dτ = 
ωn sin ωt − ω sin ωnt

ω2
 − ωn

2  . (16)

Substituting expressions (14)–(16) into (13) and allowing for equality (9), we obtain

u1 (x, t) = Ax 

1 − 

x

2h




 sin ωt + 

2Ahω
π2   ∑ 

n=1

∞

 
1

n
2ωn

 cos ωnt cos 
πnx

h
 −

− 
2Ahω2

π2   ∑ 

n=1

∞

 
1

n
2ωn

 
ωn sin ωt − ω sin ωnt

ω2
 − ωn

2  cos 
πnx

h
 ,

(17)

where ω ≠ ωn.
It is seen from this solution that resistance frequencies for the snow specimen are

ωnr = 
πnc

O

h
 ,   n = 1, 2, 3, ... .

In what follows, we consider forced vibrations of the air confined in pores of the studied snow specimen. In
these vibrations, viscous forces play an important role; therefore, all terms must be retained in Eq. (5). In this case,
ice crystals executing forced vibrations described by formula (17) produce additional bulk forces, which affect the air
filling the free space between the ice crystals. Thus, solution of (5) must satisfy the same initial and boundary condi-
tions as u1(x, t):

u2 (x, 0) = u2t (x, 0) = 0 , (18)

∂u2

∂x



 x=0

 = A sin ωt ,   
∂u2

∂x



 x=h

 = 0 . (19)
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We seek it in the form

u2 (x, t) = Ax 

1 − 

x
2h



 sin ωt + W (x, t) .

Here W(x, t) is the solution of the inhomogeneous wave equation

∂2
W

∂t
2  = c2

2
 
∂2

W

∂x
2  + Aω2

x 



1 − 

x

2h




 sin ωt − 

Ac2
2

h
 sin ωt + 





1

f0
 − 1




 
∂2

u1

∂t
2  +

+ ω∗  




∂u1

∂t
 − 
∂W

∂t




 − Aωω∗ x 




1 − 

x

2h




 cos ωt , (20)

which satisfies the conditions

∂W (0, t)
∂x

 = 
∂W (h, t)
∂x

 = 0 , (21)

W (x, 0) = 0 ,   
∂W (x, 0)

∂t
 = − Aωx 


1 − 

x
2h



 . (22)

Substituting the values of 
∂u1

∂t
 and 

∂2u1

∂t2
 obtained from (17) into (20), we have

∂2
W

∂t
2  = c2

2
 
∂2

W

∂x
2  − ω∗  ∂W

∂t
 + F1 (x, t) , (23)

where

F1 (x, t) = 



ω2

x 



1 − 

x

2h



 − 

c2
2

h
 − 




1

f0
 − 1




 ω2

x 



1 − 

x

2h



 +

+ 


1

f0
 − 1


 
2hω4

π2
  ∑ 

n=1

∞

 
1

ω2
 − ωn

2 cos 
πnx

h







 A sin ωt + Aωω∗ x 


1 − 

x

2h




 −

− 
2Ahω∗ ω3

π2
  ∑ 

n=1

∞

 
1

n
2 

1

ω2
 − ωn

2 cos 
πnx

h
 cos ωt − 

2Ahω∗ ω

π2   ∑ 

n=1

∞

 cos 
πnx

h
 sin ωnt −

− 
2Ahω

π2   ∑ 

n=1

∞

 
1

n
2 










1

f0
 − 1


 ωn 







1 + 

ω2

ω2
 − ωn

2







 − 

ω2ω∗

ω2
 − ωn

2







 cos ωnt cos 

πnx

h
 .

We also seek the solution of Eq. (23) in the form of the sum of two functions:

W (x, t) = W1 (x, t) + W2 (x, t) ,

where W1(x, t) is the solution of the wave equation
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∂2
W1

∂t
2  = c2

2
 
∂2

W1

∂x
2  − ω∗  

∂W1

∂t
 ,

satisfying conditions (21) and (22). It involves the exponential factor exp (−ω∗ t) and attenuates with time; therefore, it
is of no interest to us.

The function W2(x, t) is the solution of the inhomogeneous wave equation

∂2
W2

∂t
2  = c2

2
 
∂2

W2

∂x
2  − ω∗  

∂W2

∂t
 + F1 (x, t) , (24)

which satisfies the homogeneous initial and boundary conditions

∂W2 (0, t)
∂x

 = 
∂W2 (h, t)

∂x
 = 0 ,

(25)

W2 (x, 0) = W2t (x, 0) = 0 . (26)

The functions

Xm (x) = cos 
πmx

h
 ,   m = 1, 2, 3, ... . (27)

are the eigenfunctions of problem (24)–(26).
We seek the solution of Eq. (24) in the form of a series in terms of eigenfunctions (27):

W2 (x, t) =  ∑ 

m=1

∞

 Cm (t) cos 
πmx

h
 , (28)

where Cm(t) are the unknown amplitudes of vibrations, which depend on time t and satisfy the initial conditions Cm(0)

= 
dCm(0)

dt
 = 0.

Expansion of the function F1(x, t) into a series in terms of eigenfunctions yields

F1 (x, t) =  ∑ 

m=1

∞

 fm (t) cos 
πmx

h
 , (29)

where

fm (t) = 
2
h

 ∫ 
0

h

F1 (ξ, t) cos 
πmξ

h
 dξ .

Substituting expressions (28) and (29) into Eq. (24), we obtain linear inhomogeneous differential equations of
the second order relative to unknown functions Cm(t):

d
2
Cm

dt
2  + ω∗  

dCm

dt
 + ωm

′
2

Cm = fm (t) , (30)

here
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ωm
′  = 

πmc2

h
 ,   m = 1, 2, 3, ...

(31)

are the natural frequencies of vibrations of the air layer of thickness h in the absence of the solid snow skeleton.
The solutions of Eq. (30) that satisfy the zero initial conditions have the form

Cm (t) = 
1
ω
__

m
 exp 




− 
ω∗ t
2




 ∫ 
0

t

F1 (τ) exp 



ω∗ τ

2




 sin ω

__
m (1 − τ) dτ , (32)

where ω
__

m = √ ωm′
2
 − 
ω∗ 2

4
.

Vibration of the air confined in the snow pores is possible only when ω
__

 > 0, i.e., if 
ω∗

ωm′
 < 2, whence it follows

that

k

h
 > 

ν2

2πmc2
 ,   m = 1, 2, 3, ... . (33)

Thus, for standing waves to appear in the air confined in the pores of the considered specimen of snow, it is
necessary that the coefficient of permeability of snow be rather large or, which is the same, that the snow density be
smaller than some critical quantity.

In substituting the value of F1(τ) into (32) a number of integrals appear, which have the form

J1 = ∫ 
0

t

exp 



ω∗ τ

2




 sin ωτ sin ω

__
m (t − τ) dτ ,   J2 = ∫ 

0

t

exp 



ω∗ τ

2




 cos ωτ sin ω

__
m (t − τ) dτ ,

J3 = ∫ 
0

t

exp 



ω∗ τ

2




 sin ωnτ sin ω

__
m (t − τ) dτ ,   J4 = ∫ 

0

t

exp 



ω∗ τ
2




 cos ωnτ sin ω

__
m (t − τ) dτ .

The integrals J3 and J4 are found from J1 and J2 by substitution of ω by ωn; therefore, it suffices to consider the first
two.

We present J1 in the form

J1 = J1
′  sin ω

__
mt − J1

′′ cos ω
__

mt ,

where

J1
′  = ∫ 

0

t

exp 



ω∗ τ

2




 sin ωτ cos ω

__
mτdτ = 

1
2

 ∫ 
0

t

exp 



ω∗ τ

2




 [sin (ω + ω

__
m) τ + sin (ω − ω

__
m) τ] dτ ;

J1
′′  = ∫ 

0

t

exp 



ω∗ τ

2




 sin ωτ sin ω

__
mτdτ = 

1
2

 ∫ 
0

t

exp 



ω∗ τ

2




 [cos (ω + ω

__
m) τ − cos (ω + ω

__
m) τ] dτ .

The obtained integrals are calculated by the table formulas [4]
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 ∫ exp (ax) sin bx dx = 
exp (ax)

a
2
 + b

2  (a sin bx − b sin bx) ,

 ∫ exp (ax) cos bx dx = 
exp (ax)

a
2
 + b

2  (a cos bx + b sin bx) .

Then

J1 = 
1
2

 exp 



ω∗ t
2




 













ω∗

2
 cos ωt + (ω + ω

__
m) sin ωt

ω∗
2

4
 + (ω + ω

__
m)

2

 − 

ω∗

2
 cos ωt + (ω − ω

__
m) sin ωt

ω∗
2

4
 + (ω − ω

__
m)

2













 +

+ 
1

2
 










(ω − ω
__

m)

ω∗
2

4
 + (ω − ω

__
m)

2

 − 
(ω + ω

__
m)

ω∗
2

4
 + (ω + ω

__
m)

2











 sin ω
__

mt +

+ 
ω∗

4
 









1

ω∗
2

4
 + (ω − ω

__
m)

2

 − 
1

ω∗
2

4
 + (ω + ω

__
m)

2











 cos ω
__

mt .

Introducing the notation

∆m = 




ω∗

2

4
 + (ω − ω

__
m)

2



 




ω∗

2

4
 + (ω − ω

__
m)

2



 = (ω2

 − ωm
′
2
)2 + ω2ω∗

2

 ,

we can present this expression in the form

J1 = 
ω
__

m

√∆m
 exp 




ω∗ t
2




 sin (ωt − δm) + 

ω
∆m

 








ω∗

2

4
 + ω2

 − ωm
′
2



 sin ω

__
mt + ω∗ ω

__
m cos ωmt




 , (34)

where δm = arctan 
ωω∗

ω2 − ωm′
2
. Substituting in the integral J2 the difference t − τ by ξ, we obtain

J2 = exp 



ω∗ t
2




 ∫ 
0

t

exp 



− 
ω∗ ξ

2




 sin ω

__
mξ cos ω (t − ξ) dξ .

In this expression, the integral is calculated in the same way as the integral J1:

J2 = − 
ω
__

m

√∆m
 exp 




ω∗ t
2




 sin (ωt + δm) − 

ω
∆m

 






ω2

 − ωm
′
2 


 cos ω

__
mt + ω

__
ω∗  sin ωt




 . (35)

Substituting in equalities (34) and (35) ω by ωn, we obtain the values of the integrals J3 and J4. In this case,
instead of ∆m we have ∆mn in the form

∆mn = 



ωn

2
 − ωm

′
2 



2

 + ωn
2ω∗

2

 .
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Substitution of the values of the integrals J1, J2, J3, and J4 into (32) gives two groups of terms, one of which

involves the exponential factor exp 



− 
ω∗ t
2




 (these terms vanish with time) and the second of which does not have this

factor and describes the set-in forced vibrations of the air confined in the snow pores. This group, in turn, involves

the terms with factors 
1
√∆m

 and 
1

√∆mn
, which can be presented as

1

∆m

 = 
1

√(ω2 − ωm
′
2

)2 + ω2ω∗
2
   = 

1

ωm
′
2
 

1

√


1 − 





ω

ωm
′





2



2

 + 




ω

ωm
′





2

 







ω∗

ωm
′








2

 ,

1

∆mn

 = 
1

√(ωn
2 − ωm

′
2

)2 + ωn
2ω∗

2
   = 

1

ωm
′
2
 

1

√





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 + 







ωn

ωm
′








2

 







ω∗

ωm
′








2

 .

In the theory of vibrations, the coefficient

λm = 
1

√


1 − 





ω

ωm
′





2



2

 + 




ω

ωm
′





2

 







ω∗

ωm
′








2

(36)

is called the dynamic-response factor [5]. It shows how many times the amplitudes of forced vibrations of the system
in resonance exceed static displacement of the points of the system under the effect of the constant force that in mag-
nitude is equal to the amplitude F0 of the disturbing force.

Substituting in (36) ω by ωn, we obtain the second dynamic-response factor λmn:

λmn = 
1

√





1 − 








ωn

ωm
′








2






2

 + 







ωn

ωm
′








2

 







ω∗

ωm
′








2

 .

Introducing the notation zm = 
ω

ωm′
 and χm = 

ω∗

ωm′
 = 

ν2

kωm′
, we rewrite equality (36) in the form

λmn = 
1

√(1 − zm
2 )2 + zm

2 χm
2

 .

The quantity λm reaches a maximum at zm = √1 − 
1
2
χm

2 . Thus, resonance frequencies are determined by the

formulas

ωmr = ωm
′  √ 1 − 

1

2
 







ν2

kωm
′








2

 ,   m = 1, 2, 3, ... . (37)

1221



In this case, the maximum values of the dynamic-response factor are

λm max = 
ωm
′

ω∗
 










1 − 

1

2
 
ω∗

2

ωm
′
2











− 
1
2

 .

Resonance frequencies at which the coefficients λmn reach a maximum are also found from expression (37).
As is seen from formula (37), resonance frequencies of vibrations of the air filling the pores in the studied

snow specimen do not coincide with any of the natural frequencies of vibrations of air ωm′  = πmc2
 ⁄ h in the absence

of the solid skeleton of snow. Moreover, it follows from this formula that in the specified specimen of snow resonance

vibrations of air inclusions of snow can be excited only when the radicand in (37) is positive, i.e., if 
ν2

kωm′
 < √2 .

Hence, we obtain
k

h
 > 

ν2

√2  πmc2
 ,   m = 1, 2, 3, ... . (38)

If condition (38) is satisfied, then condition (33) is also satisfied automatically. Thus, for resonance to appear
in the air confined in the snow specimen of thickness h, condition (33), which is the necessary condition for the ap-
pearance of damping vibrations in the snow specimen, is inadequate. For resonance to originate, the ratio k/h must sat-

isfy a more strict requirement (38). In order for the first resonance to appear, the condition 
h
k

 < 
√2 πc2

ν2
 must hold, for

the second resonance — 
h
k

 < 
2√2  πc2

ν2
, and so on. Substituting the values ν2 = 2⋅10−5 m2/sec and c2 = 320 m/sec in

these conditions, we obtain h < 7.2⋅107k and h < 14.4⋅107k (k, m2; h, m), respectively. These conditions have a quite
definite physical meaning.

Origination of the steady forced vibrations of the air mass filling the pores in the snow specimen requires the
snow density to be rather small. At large snow densities, elastic vibrations that are excited on the lower base of the
studied snow specimen damp at a distance of the order of the thickness h of the snow specimen, not reaching its sur-
face; under these conditions, the concept of resonance loses its meaning. As the snow density increases, k decreases
sharply.

In the experimental studies [1], several resonance frequencies related to elastic vibrations of the air filling the
snow pores were clearly recorded for some specimens of snow. In individual snow specimens with rather large densi-
ties, resonance frequencies were not recorded. From the point of view of the theory formulated above, these results are
quite explicable.

The main advantage of the technique suggested in [1] is that it can be used for determining the coefficient of
permeability of snow k, which is expressed in terms of the resonance frequency ν1r:

k = 

ν2h

√2  πc2

√1 − 




2hν1r

c2





 . (39)

Hence it follows that the dimensionless combination of the parameters χ = χ1r = 
ν2

kω1r
, which corresponds to the reso-

nance frequency ω1r, is
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χ1r = √2 √



c2

2hν1r





2

 − 1  .
(40)

On the other hand, the dependence of the dimensionless pore velocity of sound in snow vg
 ⁄ c2 on the parameter χ is

presented in the form of a universal curve, which is given in [2]. Using this curve, one can find the ratio vg
 ⁄ c2, which

corresponds to the value χ1r, and consequently, the pore velocity of sound vg in the studied snow specimen.
Thus, formulas (39) and (40) allow one, using the technique suggested in [1], to determine the coefficient of

permeability of the studied snow specimen and the velocity of sound vg in the air confined in the snow pores. In this
case, one should bear in mind that as the snow density increases, the coefficient of permeability k decreases, and con-
sequently the required thickness of the studied snow specimen decreases in the same proportion. This will result in an
increase in the operating range of frequencies in the experimental setup [1].

NOTATION

A, dimensionless quantity; a and b, arbitrary constants; c2, velocity of sound in air; cl, longitudinal velocity of

sound in snow, m/sec; E, Young’s modulus, Pa; F0, force amplitude, N/m2; f0, coefficient of snow porosity; h, thick-

ness of the snow specimen, m; k, coefficient of permeability of snow, m2; t, time, sec; u1 and u2, small vertical dis-

placements of the elements of the structures of the snow skeleton and air inclusions in snow, m; vg, velocity of sound

in the air confined in the snow pores (pore velocity of sound), m/sec; x, coordinate, m; δm, shift of a phase (m = 1,

2, 3, ...); ε and ε′, dimensionless small quantities of order 10−2–10−3; λmn, dynamic-response factors (m, n = 1, 2, 3,

...); λm max, maximum value of the parameter λm (m = 1, 2, 3, ...); ν2, kinematic coefficient of viscosity, m2/sec; ν1r,

first resonance frequency of vibrations of the solid skeleton of the snow specimen, sec−1; νnr, nth resonance frequency

of vibrations of the solid skeleton of the snow specimen (n = 1, 2, 3, ...), sec−1; ξ, integration variable, m; ρ, snow

density, kg/m3; σ, Poisson coefficient; τ, variable of integration with respect to time, sec; ω, frequency of the outer

force, sec−1; ω∗  = ν ⁄ k, quantity having the dimension of sec−1; ωn, natural frequencies of vibrations of the solid skele-

ton of the studied snow specimen (n = 1, 2, 3, ...), sec−1; ω1r, first angular resonance frequency of vibrations of the

solid skeleton of the specimen, sec−1; ωnr, nth angular resonance frequency of vibrations of the solid skeleton of the

studied snow specimen (n = 1, 2, 3, ...), sec−1; ω
__

m = √ωm′
2
 − 

1
4
ω∗

2

 (m = 1, 2, 3, ...), sec−1; ωm′ , natural frequencies

of vibrations of the air layer of thickness h (m = 1, 2, 3, ...), sec−1; ωmr, resonance frequencies of vibrations of the

air confined in the snow pores (m = 1, 2, 3, ...), sec−1. Indices: l, longitudinal; g, group; max, maximum; r, resonance;
m = 1, 2, 3, ..., refers to air inclusions in snow; n = 1, 2, 3, ..., refers to the solid skeleton.
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